
A uniqueness result for 2-soliton

solutions of the KdV equation

John P. Albert

Department of Mathematics, University of Oklahoma, Norman OK
73019, jalbert@ou.edu

January 21, 2018

Abstract

Multisoliton solutions of the KdV equation satisfy nonlinear ordinary
differential equations which are known as stationary equations for the
KdV hierarchy, or sometimes as Lax-Novikov equations. An interest-
ing feature of these equations, known since the 1970’s, is that they can
be explicitly integrated, by virtue of being finite-dimensional completely
integrable Hamiltonian systems. Here we use the integration theory to
investigate the question of whether the multisoliton solutions are the only
nonsingular solutions of these ordinary differential equations which vanish
at infinity. In particular we prove that this is indeed the case for 2-soliton
solutions of the fourth-order stationary equation.

1 Introduction

The Korteweg-de Vries (or KdV) equation,

ut =
1

4
(uxxx + 6uux), (1.1)

was first derived in the 1800’s as a model for long, weakly nonlinear one-
dimensional water waves ([23], see also equation (283 bis) on p. 360 of [4]).
It was not until the 1960’s, however, that the striking discovery was made that
the equation has particle-like solutions known as solitons, whose interactions
with each other are described by explicit multisoliton solutions [15, 18].

It is well-known that the profiles of multisoliton solutions, which are smooth
functions that vanish rapidly at infinity, are critical points for variational prob-
lems associated with conserved functionals of KdV (see, e.g., [28]). By virtue of
this property, the profiles are solutions of Lagrange multiplier equations, which
take the form of nonlinear ordinary differential equations, sometimes known as
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Lax-Novikov equations, or as the equations for stationary solutions of a family
of time-dependent equations known as the KdV hierarchy (see below for de-
tails). In this paper we investigate the problem of establishing a converse to
this statement: is it true that if a solution to a stationary equation for the KdV
hierarchy is, together with enough of its derivatives, square integrable on the
real line, then must it be a profile of a multisoliton solution?

For the case of the KdV equation itself (the first equation in the hierarchy),
it is an elementary exercise to prove that the only stationary solutions in L2 are
the well-known solitary-wave solutions. Here we give a proof that the answer
is also affirmative for the case of the fourth-order stationary equation for the
second, fifth-order, equation in the KdV hierarchy (see Theorem 5.2 below).
Much of our proof easily generalizes to the other stationary equations for the
hierarchy, but some work remains to be done to complete the proof in the general
case.

Our proof proceeds by integrating the stationary equations, using the method
developed in the pioneering work of Dubrovin [10], Its and Matveev [20], Lax
[24], and Novikov [29] on solutions of the periodic KdV equation. An early sur-
vey of the work of these authors is [11], and more recent treatments are [2] and
[17]. For a lively historical account of the development of the subject, we refer
the reader to [25], in which it is noted that elements of the theory, including in
particular equation (2.13), can be traced back at least as far the work of Drach
[9] in 1919. Here we follow the approach of Gel’fand and Dickey, which first
appeared in [16], and has received a nice expository treatment in Chapter 12 of
Dickey’s book [7]. In this approach, the stationary equations, which have the
structure of completely integrable Hamiltonian systems, are rewritten in action-
angle variables, which reduces them to an easily integrable set of equations (see
(5.22) below) first obtained by Dubrovin in [10]. (We remark that each station-
ary equation is a finite-dimensional completely integrable Hamiltonian system
in the classical sense; unlike the time-dependent KdV equations which are in
some sense [13, 14] infinite-dimensional completely integrable Hamiltonian sys-
tems.) Integrating Dubrovin’s equations shows that every smooth solution of
the stationary equations must be expressible in the form given below in (3.22),
which is known as the Its-Matveev formula [20]. It turns out that this part of
the proof is valid for all stationary equations for the KdV hierarchy. We then
conclude by determining which solutions of the Its-Matveev formula are nonsin-
gular. The latter step we have so far only completed for the second stationary
equation in the hierarchy: that is, for the equation for 2-solitons.

We emphasize that our interest here is not in constructing solutions of the
stationary equations; all the solutions appearing in this paper are already well-
known (see, for example, [26]). Rather, our focus is on showing that a corollary
of the method used to integrate these equations is that the N -solution solutions
are the only solutions with finite energy, at least in the case N = 2. Also, we
have made an effort to give a self-contained presentation, which in fact relies
entirely on elementary calculations.

The result we prove here has consequences for the stability theory of KdV
multisolitons. As we show in a forthcoming paper, it can be used to show that
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two-soliton solutions of KdV are global minimizers for the third invariant of the
KdV equation, subject to the constraint that the first two invariants be held
constant. This in turn establishes the stability of two-soliton solutions, thus
providing an alternative proof to that appearing in [28].

We remark that in order to be useful for the stability theory, it is important
that our uniqueness result make no assumption on the values of the parameters
di appearing in equation (5.1). This requirement influenced our choice of method
of proof. An alternate method we considered was to proceed by an argument
which counts the dimensions of the stable and unstable manifolds of (5.1) at
the origin in phase space. Indeed, if one assumes in advance that d3 and d5 are
such that equation (5.5) has distinct positive roots, then this method does give,
after some work, that the well-known 2-soliton solutions are the only homoclinic
solutions of (5.1). Such an argument, however, becomes much more complicated
for other choices of di, partly because center manifolds of dimension up to 4 can
appear. For this reason, we have found it better to proceed by direct integration
of the equation instead.

The plan of the paper is as follows. In Sections 2 and 3, for the reader’s
convenience and to set notation, we review some of the basic properties of
multisoliton solutions. In Section 2 we introduce the equations of the KdV
hierarchy, and their associated stationary equations. (Here “stationary” means
“time-independent”: stationary equations are equations for time-independent
solutions of the KdV hierarchy. Coincidentally, they are also equations for
stationary points of variational problems.) In Section 3 we define the N -soliton
solutions of the KdV hierarchy, and give a proof of the well-known fact that
their profiles are actually solutions of stationary equations. Section 4 prepares
for the main result by treating the elementary case of stationary solutions of
the KdV equation itself. In Section 5 we prove the main result, which is that
for the stationary equation for the fifth-order equation in the KdV hierarchy,
the only H2 solutions are 1-soliton and 2-soliton profiles. A concluding section
discusses the question of how to generalize the result to higher equations in the
hierarchy and N -solitons for N > 2.

2 The KdV hierarchy

We review here the definition of the KdV hierarchy, following the treatment of
chapter 1 of [7].

Let A denote the differential algebra over C of formal polynomials in u
and the derivatives of u. That is, elements of A are polynomials with complex
coefficients in the symbols u, u′, u′′, etc.; and elements of A can be acted on
by a derivation ξ, a linear operator on A which obeys the Leibniz product rule,
and takes u to u′, u′ to u′′, etc. We adopt the convention that primes also
denote the action of ξ on any element of A. Thus the expressions a′ and ξa are
synonymous for a ∈ A. Later we will substitute actual functions of x for u, and
then ξ will correspond to the operation of differentiation with respect to x, so
that u′, u′′, etc., will denote the derivatives of these functions with respect to x
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in the usual sense.
If M is an integer, we define a pseudo-differential operator of order M to be

a formal sum

X =

M∑
i=−∞

ai∂
i, (2.1)

where ai ∈ A for each i. Clearly the set P of all pseudo-differential operators
has a natural module structure over the ring A. We can also make P into an
algebra by first defining, for each integer k and each a ∈ A, the product ∂ka as

∂ka = a∂k +

(
k

1

)
a′∂k−1 +

(
k

2

)
a′′∂k−2 + . . . ,

where (
k

i

)
=
k(k − 1) · · · (k − i+ 1)

i!
;

and then extending this multiplication operation to all of P in the natural way:(
M∑

i=−∞
ai∂

i

) N∑
j=−∞

bj∂
j

 =
M∑

i=−∞

N∑
j=−∞

ai(∂
ibj)∂

j

=

M∑
i=−∞

N∑
j=−∞

∞∑
l=0

ai

(
i

l

)
(ξlbj)∂

i+j−l.

The last sum in the preceding equation is well-defined in P because each value
of i + j − l occurs for only finitely many values of the indices i, j, l. It can be
checked that, with this definition of multiplication, P is an associative algebra
with derivation ∂. Interestingly, this algebra P was studied by Schur in [31],
many years before its utility for the theory of integrable systems was discovered.

In particular we will have ∂∂−1 = 1 in P. More generally, suppose X is
given by (2.1) with aM = 1. Then X has a multiplicative inverse X−1 in P;
this may be verified by first observing that the order of X−1 must be −M and
then using the equation XX−1 = 1 to solve recursively for the coefficients bi
of X−1 =

∑−M
i=−∞ bi∂

i. Carrying out this process, one finds that the bi are
polynomials in the ai and their derivatives. Similarly, there exists Y ∈ P such
that Y m = X, as may be proved by observing that Y must be of order 1,
and using the equation Y m = X to solve recursively for the coefficients ci of
Y =

∑1
i=−∞ ci∂

i. These coefficients will be uniquely determined if we specify
that c1 = 1, and in that case the operator Y so obtained will be denoted by
X1/m. (All other solutions of Y m = 1 are of the form αX1/m where α is an mth
root of unity.) For k ∈ Z we then define Xk/m to be the kth power of X1/m.
Since X is an integer power of X1/m it follows immediately that X and X1/m

commute, and hence so do X and Xk/m.
If in (2.1) we have ai = 0 for all i < 0, then we say that X is a differential

operator; obviously the product and sum of any two differential operators is
again a differential operator. For general X ∈ P, the differential part of X,
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denoted by X+, is defined to be the differential operator obtained by omitting
all the terms from X which contain ∂i with negative i. We also define X− to be
X −X+. As usual, we define the commutator [X1, X2] of two elements of P by
[X1, X2] = X1X2−X2X1. Also, if X is given by (2.1), it will be useful to define
the residue of X, ResX, to equal a−1. That is, ResX ∈ A is the coefficient of
∂−1 in the expansion of X. Finally, for X as in (2.1) we define σ2(X) ∈ P by

σ2(X) = a−1 ∂
−1 + a−2 ∂

−2. (2.2)

The Korteweg-de Vries hierarchy can be defined in terms of fractional powers
of the differential operator L given by

L = ∂2 + u. (2.3)

From the above considerations, L(2k+1)/2 is well-defined as an element of P for
each nonnegative integer k. When we take its differential part, we obtain the
operator

(
L(2k+1)/2

)
+
, which has the following important property.

Lemma 2.1. The commutator [
(
L(2k+1)/2

)
+
, L] is a differential operator of

order 0; that is, a polynomial in u and its derivatives. In fact, it is given by the
equation [(

L(2k+1)/2
)
+
, L

]
= 2

(
ResL(2k+1)/2

)′
. (2.4)

Proof. As the commutator of two differential operators, [
(
L(2k+1)/2

)
+
, L] is a

differential operator. Now

[
(
L(2k+1)/2

)
+
, L] = [L(2k+1)/2, L]− [

(
L(2k+1)/2

)
−
, L],

and, as noted above, L(2k+1)/2 commutes with L, so

[
(
L(2k+1)/2

)
+
, L] = −[

(
L(2k+1)/2

)
−
, L]. (2.5)

Observe that, in general, the commutator of an operator of order M1 and an
operator of order M2 has order M1 + M2 − 1. Since the right hand side of
(2.5) is a commutator of an operator of order −1 and an operator of order 2, it
therefore has order 0.

Once it is established that both sides of (2.5) are equal to a differential
operator of order 0, the identity (2.4) is easily obtained by computing the term
of order 0 in the expansion of −[

(
L(2k+1)/2

)
− , L].

The Korteweg-de Vries hierarchy is a set of partial differential equations,
indexed by the natural numbers k = 0, 1, 2, 3, . . . , for functions u(x, t2k+1) of
two real variables x and t2k+1. The kth equation in the hierarchy is defined as

ut2k+1
= 2

(
ResL(2k+1)/2

)′
. (2.6)
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Here the subscripted t2k+1 denotes the derivative with respect to t2k+1. Starting
with k = 0, the first three in the hierarchy are given by:

ut1 = u′,

ut3 =
1

4
(u′′′ + 6uu′),

ut5 =
1

16
(u′′′′′ + 10uu′′′ + 20u′u′′ + 30u2u′).

(2.7)

The second equation in (2.7) is the KdV equation (1.1).
This definition of the hierarchy is due to Gelfand and Dickey, and leads to

simple formulations and proofs of many properties of these equations, including
the fact that they define commuting flows, which were formerly proved by more
unwieldy methods. Also, natural modifications of the definition lead readily to
more general hierarchies of equations (today called Gelfand-Dickey hierarchies),
of which the Korteweg-de Vries hierarchy is just one, and which share many of
the interesting integrability properties of the Korteweg-de Vries hierarchy [7, 8].

An important feature of the KdV hierarchy (2.6) is that the differential
polynomials which appear on the right-hand side satisfy a simple recurrence
relation. Following the notation of Chapter 12 of [7], let us define, for k =
0, 1, 2, . . . ,

R2k+1 =
(−1)k

2
ResL(2k−1)/2,

so that the KdV hierarchy takes the form

ut2k+1
= 4(−1)k+1R′

2k+3. (2.8)

Lemma 2.2. The differential polynomials R2k+1 satisfy the recurrence relation

R′′′
2k+1 + 4uR′

2k+1 + 2u′R2k+1 = −4R′
2k+3, (2.9)

for k = 0, 1, 2, . . . , with initial condition R1 = 1/2.

Proof. The proof of this lemma is essentially an exercise on the material in
Section 1.7 of [7], but for the reader’s convenience we indicate the details here.

Let C denote the set of all formal Laurent series in z of the form

∞∑
r=−∞

Xrz
r,

where Xr ∈ P for r ∈ Z. Then C inherits an operation of addition from
P, and if S and T are in C and all but finitely many of the coefficients in T
are zero, then the products ST and TS are defined in C by the usual term-
by-term multiplication of series. Also, for S =

∑∞
r=−∞Xrz

r in C we define
S+ =

∑∞
r=−∞(Xr)+z

r, S− =
∑∞

r=−∞(Xr)−z
r, Res(S) =

∑∞
r=−∞(ResXr)z

r,
and σ2(S) =

∑∞
r=−∞ σ(Xr)z

r, where σ2 is the operator defined in (2.2).

Let L̂ = L− z2, and define the map H : C → C by

H(X) = (L̂X)+L̂− L̂(XL̂)+.
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(Dickey [7] calls H the Adler map, as it was introduced in section 4 of [1].) Since

(L̂X)L̂ = L̂(XL̂), it follows that H(X) = (L̂X)−L̂ − L̂(XL̂)− for all X in C.
Moreover, from the definition of H and the fact that L is a differential operator
of order 2, one sees easily that H(X) = H(σ2(X)) for all X in C.

Define

T =
∞∑

r=−∞
Lr/2z−r−4.

Clearly L̂T = T L̂ = 0, soH(T ) = 0, and hence alsoH(σ2(T )) = 0. On the other
hand, by observing that σ2(L

2k) = 0 for all nonnegative integers k, σ2(L
r/2) = 0

for all integers r ≤ −3, and σ2(L
−1) = ∂−2, we can write σ2(T ) as

σ2(T ) = R∂−1 + R̃∂−2, (2.10)

where R and R̃ are in C and

R = Resσ2(T ) =

∞∑
k=0

2(−1)kR2k+1 z
−2k−3. (2.11)

Substituting (2.10) into the equation H(σ2(T )) = 0, we find after a computation
that

0 = H(σ2(T )) = (−R̃′′ + 2uR′ + u′R− 2z2R′)− (R′′ + 2R̃′)∂, (2.12)

and therefore R̃ = −1
2R

′ and

1

2
R′′′ + 2uR′ + u′R = 2z2R′. (2.13)

Then substituting (2.11) into (2.13) gives (2.9) for k = 0, 1, 2, . . . . Finally, we
can verify that R1 = 1/2 by directly computing R1 = 1

2 ResL
−1/2.

Using the recurrence relation in Lemma 2.2, we find, for example, that the
first few terms in the sequence {R2k+1} are

R1 = 1/2,

R3 = (−1/4)u,

R5 = (1/16)(u′′ + 3u2),

R7 = (−1/64)(u′′′′ + 5u′2 + 10uu′′ + 10u3).

(2.14)

Of particular interest are time-independent or stationary solutions of (2.8).
If u is a such a solution, then u satisfies (2.8) with ut = 0, and hence integration
gives that u satisfies the equation R2k+3 = d, where d is a constant, independent
of x and t. Letting d1 = 2d, we can rewrite this equation in the form

d1R1 −R2k+3 = 0.
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More generally, we can view any solution of the equation

d1R1 + d3R3 + d5R5 + · · ·+ d2N+3R2N+3 = 0 (2.15)

as a stationary solution of the equation

ut = d3R
′
3 + d5R

′
5 + · · ·+ d2N+3R

′
2N+3,

which itself can be considered to be an equation in the KdV hierarchy. For this
reason, following [7], we refer to equations (2.15) as the stationary equations of
the KdV hierarchy. (They are also sometimes called Lax-Novikov equations.)

Equation (2.15) is an ordinary differential equation of order 2N , and can
therefore be rewritten as a first-order system in phase space R2N . It turns out
that this system is of Hamiltonian form, and in fact is completely integrable in
the sense that it has N independent integrals in involution with each other. In
general, Liouville’s method provides a technique for actually integrating com-
pletely integrable systems: that is, for explicitly finding the transformation from
coordinates of phase space to action-angle variables. However, this integration
involves solving a system of first-order partial differential equations. For the
system (2.15), Dubrovin [10] introduced a change of variables under which this
system of PDE’s has a simple form and is trivially solvable. This is the change
of variables we use below in Section 5.

3 N-soliton profiles

Another key aspect of the KdV hierarchy is that the flows which it defines
all commute with each other, at least formally. More precisely, one can check
that the equations in (2.8) have the formal structure of Hamiltonian equations
with respect to a certain symplectic form, and are all in involution with each
other with respect to this form (see, for example, chapters 1 through 4 of [7]).
This suggests the following. Assume that a function class S has been defined
such that for each k ∈ N, the initial-value problem for equation (2.8) is well-
posed on S, and let S(t2k+1) be the solution map for this problem, which to
each ψ ∈ S assigns the function S(t2k+1)[ψ] = u(·, t2k+1) ∈ S, where u is
the solution of (2.8) with initial data u(x, 0) = ψ(x). Then in light of the
formal structure mentioned above, one would expect that the solution operators
S(t2k+1) and S(t2l+1) commute with each other as mappings on S. Hence, for
each ψ ∈ S and each l ∈ N, one should be able to define a simultaneous solution
u(x, t1, t3, t5, . . . , t2l+1) to all of the first l equations in the hierarchy by setting

u(x, t1, t3, . . . , t2l+1) = S(t1)S(t3) · · ·S(t2l+1)ψ.

This formal analysis, however, does not lead easily to concrete results about
general solutions of the KdV hierarchy. For this reason there has historically
been great interest in constructing and elucidating the structure of explicit so-
lutions. In this section we review the definition and basic properties of an
important class of such solutions, the N -soliton solutions.
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To begin the construction of N -soliton solutions, let N ∈ N, and for 1 ≤
j ≤ N define the functions

yj(x) = eαjx + aje
−αjx, (3.1)

where αj and aj are complex numbers satisfying

(i) for all j ∈ {1, . . . , N}, αj ̸= 0 and aj ̸= 0,

(ii) for all j, k ∈ {1, . . . , N}, if j < k then αj ̸= αk and 0 ≤ Reαj ≤ Reαk.
(3.2)

We will use D(y1, . . . , yN ) to denote the Wronskian of y1, . . . yN :

D(y1, . . . , yN ) =

∣∣∣∣∣∣∣∣
y1 . . . yN
y′1 . . . y′N
. . . . . . . . .

y
(N−1)
1 . . . y

(N−1)
N

∣∣∣∣∣∣∣∣ . (3.3)

Next we will construct an operator of the form (2.3) from the yj , using a
technique known as the “dressing method” [7]. First, on any interval I where
D ̸= 0, we define a differential operator ϕ of order N by

ϕ =
1

D

∣∣∣∣∣∣∣∣∣∣

y1 . . . yN 1
y′1 . . . y′N ∂
. . . . . . . . . . . .

y
(N−1)
1 . . . y

(N−1)
N ∂N−1

y
(N)
1 . . . y

(N)
N ∂N

∣∣∣∣∣∣∣∣∣∣
. (3.4)

Here it is understood that the determinant in (3.4) is to be expanded along the
final column, multiplying each operator ∂i by its corresponding cofactor on the
left. In other words,

ϕ = ∂N +WN−1∂
N−1 +WN−2∂

N−2 + · · ·+W1∂ +W0, (3.5)

where for i = 1, . . . , N − 1,

Wi =
(−1)N+2+i

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 . . . yN
y′1 . . . y′N
. . . . . . . . .

y
(i−1)
1 . . . y

(i−1)
N

y
(i+1)
1 . . . y

(i+1)
N

. . . . . . . . .

y
(N)
1 . . . y

(N)
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.6)

and

W0 =
(−1)N+2

D

∣∣∣∣∣∣∣∣
y′1 . . . y′N
y′′1 . . . y′′N
. . . . . . . . .

y
(N)
1 . . . y

(N)
N

∣∣∣∣∣∣∣∣ . (3.7)
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Next, we slightly generalize the notion of pseudo-differential operator defined
in Section 2 to include formal sums of type (2.1) in which the ai are no longer
differential polynomials in a single variable u, but now are rational functions
of the n symbols y1, y2, . . . , yn and their formal derivatives y′1, y

′′
1 , y

′
2, y

′′
2 , etc.

(forgetting for the moment that y1, y2, . . . , yn are actually functions of x). The
definitions of the multiplication and inverse operations on pseudo-differential
operators given in Section 2 remain unchanged for this larger algebra. Thus,
ϕ as defined in (3.4) has a formal inverse ϕ−1, which is a pseudo-differential
operator whose coefficients are rational functions of yi and their derivatives,
expressible as polynomials in Wj and their derivatives. We now define L as the
formal pseudo-differential operator given by

L = ϕ∂2ϕ−1. (3.8)

Lemma 3.1. The differential part of L is

L+ = ∂2 − 2W ′
N−1. (3.9)

Proof. First observe that

L = (ϕ∂−N )∂2(ϕ∂−N )−1. (3.10)

Now we can write

ϕ∂−N = 1 +WN−1∂
−1 +WN−2∂

−2 +O(∂−3), (3.11)

where “O(∂−3)” denotes terms containing ∂j with j ≤ −3. Also, a computation
shows that

(ϕ∂−N )−1 = 1−WN−1∂
−1 +

(
W 2

N−1 −WN−2

)
∂−2 +O(∂−3). (3.12)

Equation (3.9) then follows easily by inserting (3.11) and (3.12) into (3.10) and
carrying out the multiplication to determine the terms of nonnegative order.

Lemma 3.2. Define W−1 = 0. Then

L−ϕ = −
N−1∑
j=0

(
W ′′

j + 2W ′
j−1 − 2W ′

N−1Wj

)
∂j . (3.13)

Proof. Since L− = L− L+, we have from (3.8) that

L−ϕ = ϕ∂2 − L+ϕ. (3.14)

The desired result follows by substituting (3.5) and (3.9) into the right-hand
side, and carrying out the multiplications.
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So far, in discussing ϕ and L, we have considered them only as formal pseudo-
differential operators with coefficients that are rational functions in the symbols
yi, y

′
i, y

′′
i ,. . . . Now, however, we wish to “remember” the fact that these coef-

ficients are specific functions of x. To this end we first observe that by (3.2)
the functions y1, . . . , yN are analytic and linearly independent. Therefore, by a
theorem of Peano (see [3]), their Wronskian D cannot vanish identically on any
open interval in R. In particular, by continuity there exists an open interval
I on R such that D(x) ̸= 0 for all x ∈ I. Therefore, on I the right-hand-side
of (3.4) defines a linear differential operator with smooth coefficients Wi for
i = 1, . . . , N − 1. To emphasize the distinction between the formal operator ϕ
and its concrete realization, we introduce the notation r(ϕ) for the differential
operator with smooth coefficients on I obtained by remembering that the yi are
certain functions of x.

More generally, if X is any pseudo-differential operator whose coefficients
are formal polynomials in Wi and their derivatives, we define r(X) to be the
operator obtained by remembering that the coefficients ofX are actually smooth
functions of x on I. Thus r defines an algebra homomorphism from P to the
to the algebra of pseudo-differential operators with coefficients that are smooth
functions on I.

Although it is clear from Lemma 3.2 that L− is not zero as a formal pseudo-
differential operator, nevertheless the coefficients of L− evaluate to zero when
viewed as functions on I. That is, we have the following result.

Lemma 3.3. When L is defined as in (3.8), with ϕ given by (3.4), then

r(L−) = 0.

Proof. From (3.13) we have that, as a formal pseudo-differential operator,

L−ϕ =

N−1∑
j=0

Fj∂
j ,

where each Fj is a differential polynomial in W0, . . . ,WN−1. Therefore

r(L−ϕ) =

N−1∑
j=0

Fj(x)∂
j ,

where the Fj(x) are smooth functions on I.
For all i = 1, . . . , N , we see from (3.4) that

r(ϕ)yi = 0, (3.15)

and since ∂2yi = α2
i yi, then r(ϕ∂

2)yi = 0 also. Therefore (3.14) implies that

r(L−ϕ)yi =
N−1∑
j=0

Fj(x)∂jyi(x) = 0 for i = 1, . . . , N. (3.16)
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SinceD(x) = det(∂jyi(x)) ̸= 0 for all x ∈ I, it follows from (3.16) that Fj(x) = 0
for all x ∈ I and all j = 0, 1, . . . , N − 1.

Now as a formal pseudo-differential operator, ϕ is invertible, with inverse
ϕ−1 of the form

ϕ−1 =

∞∑
k=0

Bk∂
−N−k,

where the Bk are differential polynomials in W0, . . . ,WN−1. Hence

L− = (L−ϕ)ϕ
−1 =

N−1∑
j=0

Fj∂
j

∞∑
k=0

Bk∂
−N−k =

∞∑
r=1

N−1∑
j=0

(FjGj,r)∂
N−r,

where each Gj,r is a finite linear combination of the Bk and their formal deriva-
tives B′

k, B
′′
k ,. . . . Since Fj(x) = 0 for all x ∈ I, it follows that the coefficients∑N−1

j=0 (Fj(x)Gj,r(x)) of r(L−) are also identically zero on I.

The following consequence of Lemma 3.3 will be useful in Section 5.

Corollary 3.4. If I is any interval such that D(x) ̸= 0 for all x ∈ I, then the
equation

W ′
N−1 −W 2

N−1 + 2WN−2 +
N∑
i=1

α2
i = 0 (3.17)

holds at all points of I.

Proof. From Lemma 3.3 we have r(L−) = 0, and hence each coefficient in the
sum in (3.13) is identically zero as a function of x on I. In particular,

W ′′
N−1 + 2W ′

N−2 − 2W ′
N−1WN−1 = 0

on I. Integrating gives

W ′
N−1 + 2WN−2 −W 2

N−1 + C = 0,

where C is a constant.
To evaluate C, first assume that α1, . . . , αN are positive numbers, and

observe that since yi behaves as x → ∞ like eαix, we have that lim
x→∞

WN−1 =

−d1/d, lim
x→∞

W ′
N−1 = 0, and lim

x→∞
WN−2 = d2/d, where

d =

∣∣∣∣∣∣∣∣∣∣
1 . . . 1
α1 . . . αN

α2
1 . . . α2

N

. . . . . . . . .

αN−1
1 . . . αN−1

N

∣∣∣∣∣∣∣∣∣∣

12



is the Vandermonde matrix of the numbers α1, . . . , αN , and

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
α1 . . . αN

α2
1 . . . α2

N

. . . . . . . . .

αN−2
1 . . . αN−2

N

αN
1 . . . αN

N

∣∣∣∣∣∣∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
α1 . . . αN

α2
1 . . . α2

N

. . . . . . . . .

αN−3
1 . . . αN−3

N

αN−1
1 . . . αN−1

N

αN
1 . . . αN

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore

C = lim
x→∞

(
W 2

N−1 − 2WN−2 −W ′
N−1

)
=

(
d1
d

)2

− 2

(
d2
d

)
. (3.18)

But it follows from a classic exercise on Vandermonde matrices (see problem 10
on p. 99 of [30], or [27]) that

d1/d =
n∑

i=1

αi and d2/d =
∑

1≤i<j≤n

αiαj .

Substituting in (3.18), we obtain C =
∑N

i=1 α
2
i , as desired. The result for general

complex values of α1, . . . , αN then follows by analytic continuation.

Remark. Since (3.17) is a Ricatti equation, the substitution WN−1 = −D′/D
converts it to the following linear equation for D:

D′′ =

(
2WN−2 +

N∑
i=1

α2
i

)
D. (3.19)

Corollary 3.4 is therefore equivalent to the assertion that (3.19) holds when D
is given by (3.3) and (3.1).

Corollary 3.5. Suppose D is given by (3.3), ϕ by (3.4), and L by (3.8). Then

r(L) = ∂2 + u,

where

u = 2

(
D′

D

)′

. (3.20)

Proof. From the definition of the determinant and the product rule, one easily
sees that the derivative of D is given by

D′ =

∣∣∣∣∣∣∣∣∣∣

y1 . . . yN
y′1 . . . y′N
. . . . . . . . .

y
(N−2)
1 . . . y

(N−2)
N

y
(N)
1 . . . y

(N)
N

∣∣∣∣∣∣∣∣∣∣
, (3.21)
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which, as we see from (3.6), implies that WN−1 = −D′/D. Since r(L) =
r(L+)+r(L−), the desired result therefore follows from Lemma 3.1 and Lemma
3.3.

Definition 3.6. Let yj be given by (3.1), and assume (3.2) holds. Then we
define

ψ(N)(x) = ψ(N)(x; a1, . . . , aN ;α1, . . . , αN ) = 2

(
D′(y1, . . . , yN )

D(y1, . . . , yN )

)′

(3.22)

for all x such that D(y1, . . . , yN ) ̸= 0.

Introducing simple time dependencies into ψ(N) yields a function which sat-
isfies all the equations in the KdV hierarchy simultaneously.

Theorem 3.7. Let N ∈ N, and let aj, and αj, j = 1, . . . , N be complex numbers
satisfying (3.2). Fix l ∈ N, and for 1 ≤ j ≤ N , define the function ãj by

ãj(x, t3, t5, t7, . . . , t2l+1) = aj exp
(
−2(α3

j t3 + α5
j t5 + · · ·+ α2l+1

j t2l+1)
)
.

(3.23)
Then let u be defined as a function of x, t3, t5, . . . , t2l+1 by

u = ψ(N) (x; ã1, . . . , ãN ;α1, . . . , αN ) . (3.24)

Then for all k ∈ {1, . . . , l}, and at all points in its domain of definition, u
satisfies the partial differential equation

∂u

∂t2k+1
=

[(
L(2k+1)/2

)
+
, L

]
= 4(−1)k+1R′

2k+3. (3.25)

Remark. Using the fact that multiplication of yi by the exponential of a linear
function of x does not change the value of ψ(N), one sees easily that (3.24) can
also be written in the form

u = 2

(
D′(ỹ1, . . . , ỹN )

D(ỹ1, . . . , ỹN )

)′

,

where ỹj(x) = ewj + aje
−wj and wj = αjx+ α3

j t3 + α5
j t5 + · · ·+ α2l+1

j t2l+1.

We will not need to make use of Theorem 3.7 in the present paper, and so
do not include a proof here. But the reader may be interested to know that,
using the tools defined in Section 2 above, a one-paragraph proof can be given.
It may be found in [7], where it appears as the proof of part (ii) of Proposition
1.6.5 in [7], or in [8] as the proof of Proposition 1.7.5.

We are concerned here, rather, with the fact the functions ψ(N) satisfy sta-
tionary equations of the form (2.15):

14



Theorem 3.8. Let ψ(N) be as in Definition 3.6, and define constants s0, s1,
. . . , sN by

s0 + s1x+ s2x
2 + · · ·+ sNx

N = (x− α2
1)(x− α2

2) · · · (x− α2
N ); (3.26)

in other words, si is the ith elementary symmetric function of N variables,
evaluated on −α2

1, . . . , −α2
N . Then, on each interval of its domain of definition,

the function
u(x) = ψ(N)(x; a1, . . . , aN ;α1, . . . , αN )

satisfies the ordinary differential equation in x given by

s0R3 − s1R5 + s2R7 + · · ·+ (−1)NsNR2N+3 = C, (3.27)

where C is a constant.

Proof. Define ãi by (3.23) with l = N , and for i = 1, . . . , N extend yi to be a
function of x, t3, t5, . . . , t2N+1 by replacing ai with ãi in (3.1). That is, set

yi = exp(αix) + ai exp
[
−(αix+ 2α3

i t3 + 2α5
i t5 + · · ·+ 2α2N+1

i t2N+1)
]
. (3.28)

Also extend u to be a function of x, t3, t5, . . . , t2N+1 by (3.24). With ϕ and Wi

defined in terms of yi as before, we have as in (3.20) that

u = −2W ′
N−1. (3.29)

For 1 ≤ k ≤ N , let ∂2k+1 denote differentiation with respect to t2k+1.
For each i from 1 to N , we apply to both sides of (3.15) the operator

∂̃ = s0∂ + s1∂3 + s2∂5 + · · ·+ sN∂2N+1.

There results the identity

0 = (∂̃r(ϕ))yi + r(ϕ)(∂̃yi), (3.30)

where

∂̃r(ϕ) = (∂̃WN−1)∂
N−1 + (∂̃WN−2)∂

N−2 + · · ·+ (∂̃W1)∂ + ∂̃W0.

But for all k = 1, . . . , N we have from (3.28) that

∂2k+1yi = α2k+1
i zi,

where

zi = −2ai exp
[
−(αix+ 2α3

i t3 + 2α5
i t5 + · · ·+ 2α2N+1

i t2N+1)
]
.

Therefore
∂̃yi =

(
s0αi + s1α

3
i + s2α

5
i + · · ·+ sNα

2N+1
i

)
zi. (3.31)
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It follows from (3.26) and (3.31) that ∂̃yi = 0, and so, by (3.30),

(∂̃r(ϕ))yi = 0.

Now ∂̃r(ϕ) is a linear differential operator in x of order N − 1 or less, so as
in the proof of Lemma 3.3, the fact that it takes all the functions y1, . . . , yN
to zero means that all its coefficients must be identically zero. In particular,
∂̃WN−1 = 0, or, in other words,

s0∂WN−1 + s1∂3WN−1 + · · ·+ sN∂2N+1WN−1 = 0. (3.32)

On the other hand, (3.25) and (3.29) tell us that

−2∂2k+1W
′
N−1 = 4(−1)k+1R′

2k+3 (3.33)

for 1 ≤ k ≤ l. Integrating (3.33) with respect to x, we obtain

∂2k+1WN−1 = 2(−1)kR2k+3 + Ck, (3.34)

for 1 ≤ k ≤ l, where Ck is a constant of integration. Moreover, from (2.9) we
have R3 = −u/4, and hence

∂WN−1 =W ′
N−1 = 2R3. (3.35)

Substituting (3.34) and (3.35) into (3.32) then gives (3.27).

In general, ψ(N) will have singularities at points where the denominator D in
(3.4) is equal to zero, but away from these points, ψ(N) is a smooth, and in fact
analytic, function of its arguments. Our next task is to determine conditions
on the parameters αi and ai under which D has no zeros on R, or equivalently
under which ψ(N) is a smooth function on all of R.

For this purpose it will be useful to represent D as an explicit sum of expo-
nential functions. For given N ∈ N, let {−1, 1}N denote the set of functions ϵ
from {1, . . . , N} to {−1, 1}; thus {−1, 1}N has cardinality 2N . For ϵ ∈ {−1, 1}N ,
we denote the image of j under ϵ by ϵj , and define S(ϵ) to be the set of all
j ∈ {1, . . . , N} such that ϵj = −1. Also, for any ordered N -tuple (r1, . . . , rN ),
let

V (r1, . . . , rN ) = det{rj−1
i }i,j=1,N =

∏
1≤i<j≤N

(rj − ri)

be the corresponding Vandermonde determinant. Then expansion of the deter-
minant in (3.3) yields the formula

D =
∑

ϵ∈{−1,1}N

exp
 N∑

j=1

ϵjαjx

 ∏
j∈S(ϵ)

aj

V (ϵ1α1, . . . , ϵNαN )

 . (3.36)

Lemma 3.9. Let yj be given by (3.1), and suppose that (3.2) holds. Suppose in
addition that for all j ∈ {1, . . . , N}, Reαj > 0. Then ψ(N) and all of its deriva-
tives are defined for all sufficiently large |x|, and approach zero exponentially
fast as |x| → ∞.
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Proof. Because Reαj > 0 for all j, the dominant term in (3.36) is V eSx, where

V = V (α1, . . . , αN ) and S =
∑N

j=1 αj : all other terms have exponents with
smaller real parts. In particular, we have D(x) ̸= 0 whenever |x| is sufficiently
large. The dominant terms in D′(x) and D′′(x) are V SeSx and V S2eSx, respec-
tively; and so in the expression ψ(N)(x) = 2(DD′′−(D′)2)/D2, the denominator
has dominant term V 2e2Sx, while the coefficient of e2Sx in the numerator is zero.
It follows easily that ψ(N)(x), together with all its derivatives, tends to zero ex-
ponentially fast as x→ ∞. A similar argument applies as x→ −∞ (where the
dominant term in D(x) is |a1 · · · aNV |e|Sx|).

Lemma 3.10. Let yj be given by (3.1), and suppose that (3.2) holds. Suppose
also that for all j ∈ {1, . . . , N}, αj and aj are real, and

(−1)j−1aj > 0. (3.37)

Then ψ(N)(x) ∈ H1(R).

Proof. Suppose that the αj and aj are real and (3.37) holds. Then for 1 ≤ j <
k ≤ N the factor ϵkαk−ϵjαj in V (ϵ1α1, . . . , ϵNαN ) has the same sign as ϵk. For
a given k, there are k − 1 such factors in V (ϵ1α1, . . . , ϵNαN ), corresponding to
the values 1 ≤ j ≤ k − 1, so the sign of V (ϵ1α1, . . . , ϵNαN ) is

∏
k∈S(ϵ)(−1)k−1.

It then follows from (3.37) that the coefficient of each exponential in (3.36) is
positive. Hence D > 0 for all x ∈ R, and it follows that ψ(N)(x) is well-defined
and smooth on all of R. Then from Lemma 3.9 it follows that ψ(N) ∈ H1.

Lemma 3.11. Let yj be given by (3.1), and suppose that (3.2) holds. Suppose
also that for each j ∈ {1, . . . , N}, either (i) αj and aj are real, (ii) αj is
purely imaginary and |aj | = 1, or (iii) there exists k ∈ {1, . . . , N} such that
αk = α∗

j and ak = a∗j . (These conditions can be summarized by saying that

the numbers α2
j and (log aj)

2 are either real and of the same sign, or occur in

complex conjugate pairs.) Then ψ(N)(x) is real-valued at all points where it is
defined.

Proof. In case (i) we have y∗j = yj , in case (ii) we have y∗j = (1/aj)yj , and
in case (iii) we have y∗j = yk. It follows easily that the conjugate D∗ of D =

D(y1, . . . , yN ) is equal to a constant times D itself. Therefore (ψ(N))∗ = ψ(N).

Definition 3.12. We say that ψ(N)(x; a1, . . . , aN ;α1, . . . , αN ) is an N -soliton
profile if ψ(N)(x) is real-valued for all x ∈ R, and ψ(N)(x) ∈ H1(R). The corre-
sponding time-dependent functions given by (3.24) are called N -soliton solutions
of the KdV hierarchy. The numbers α1, . . . , αN are called the wavespeeds of
the N -soliton solution.

Remarks. (i) At least in the case when N = 2, it can be shown that, given
that the conditions in (3.2) hold for aj and αj , the hypotheses on aj and αj in
Lemmas 3.10 and 3.11 are not only sufficient for ψ(N) to be an N -soliton profile
according to the above definition, but also necessary. We conjecture that these
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conditions on aj and αj are also necessary in the case of general N , although
we have not proved this yet.

(ii) If the conjecture in the preceding remark is true, it then follows from
Lemma 3.9 that N -soliton profiles, together with all their derivatives, approach
zero exponentially fast as |x| → ∞.

(iii) By transforming the index in the outermost sum of (3.36) from ϵ to
µ, where µj = 1

2 (ϵj + 1) for j ∈ {1, . . . , N}, one can rewrite D in the form
D = epx+qD1, where p and q are constants and

D1 =
∑

µ∈{0,1}N

exp

 N∑
i=1

2µiαi(x+ ζi) +
∑

1≤i<j≤n

µiµjAij

 ,

where ζi and Aij are real constants. Explicitly, one has

epx+q = exp
(
−ΣN

i=1αix
)
V (α1, . . . , αN )ΠN

j=1|aj |,

ζi =
1

2αi
log

∣∣∣∣V (α1, . . . , αi−1,−αi, αi+1, . . . , αN )

aiV (α1, . . . , αN )

∣∣∣∣ , (i = 1, . . . , N)

Aij = 2 log

∣∣∣∣αj − αi

αj + αi

∣∣∣∣ , (i, j = 1, . . . , N).

(Here use has been made of the assumption (3.37).) Writing

ψ(N) = 2(D′
1/D1)

′,

one obtains the formula for N -soliton profile found in [28] or on page 55 of [19].
(iv) If ψ(N) is an N -soliton solution, then the constant C in equation (3.27)

is equal to zero; that is,

s0R3 − s1R5 + s2R7 + · · ·+ (−1)NsNR2N+3 = 0 (3.38)

on R. This is seen by taking the limit of (3.27) as x → ∞, and observing
that, for each k ≥ 1, R2k+1 is a differential polynomial in u = ψ(N) and its
derivatives, with no constant term.

4 The stationary equation for N = 1

To set the stage for the analysis of (2.15) in the case N = 2, we now discuss
the case N = 1. The result we prove in this section, Theorem 4.2, is a standard
exercise in elementary integration, but writing out the proof in detail will serve
to introduce the notation we use for the more complicated computations of the
next section.

From (2.14), we have that in the case when N = 1, (2.15) is given by

d1
2

− d3
4
(u) +

d5
16

(u′′ + 3u2) = 0. (4.1)
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Suppose d1, d3, and d5 are given real numbers, and suppose u ∈ L2 is a
real-valued solution of the ordinary differential equation (4.1) (in the sense of
distributions). Then from (4.1) we see that d5 must be nonzero, and by dividing
by d5 if necessary, we can assume that d5 = 1. Also, multiplying both sides of
(4.1) by a test function ϕτ (x) = ϕ(x − τ), where

∫
R
ϕ(x) dx = 1, and letting

τ → ∞, we arrive at the conclusion that

lim
τ→∞

∫
R

uϕ′′τ = lim
τ→∞

∫
R

u′′ϕτ = lim
τ→∞

∫
R

(−3u2 + 4d3u− 8d1)ϕτ = −8d1, (4.2)

from which it follows that d1 = 0. Letting C = d3, we can then write (4.1) as

C

(
−u
4

)
+

1

16
(u′′ + 3u2) = 0. (4.3)

Lemma 4.1. Suppose u ∈ L2 is a solution of (4.3) in the sense of distributions.
Then u must be in Hs for all s ≥ 0, and u is analytic on R.

Proof. Equation (4.3) can be rewritten as

u− u′′ = au+ bu2, (4.4)

where a and b are constants. Let F denote the Fourier transform, defined for
f ∈ L1 by Ff(k) =

∫∞
−∞ f(x)eikx dx, and extended to L2 in the usual way.

Letting f = au and g = bu2, taking the Fourier transform of (4.4), and dividing
both sides by (1 + k2)1/2, we obtain

(1 + k2)1/2Fu =
1

(1 + k2)1/2
(Ff + Fg).

Since f is in L2, then Ff and Ff/(1 + k2)1/2 are in L2; and since g is in L1,
then Fg is bounded and continuous, and Fg/(1 + k2)1/2 is in L2. Therefore
(1 + k2)1/2Fu ∈ L2, so u ∈ H1. But it then follows that u2 ∈ L2, whence both
f and g are in L2, so (4.4) gives u′′ ∈ L2 and u ∈ H2. Taking derivatives of
(4.4) successively now easily gives that all higher-order derivatives of u are in
L2, so that u ∈ Hs for all s ≥ 0.

As a particular consequence, we have that u is a classical solution of (4.4)
on R. Therefore the fact that u is analytic on R follows from the fundamental
theorems of ordinary differential equations, given that the right-hand side of
(4.4) is an analytic function of u (see, e.g., section 1.8 of [5]).

Theorem 4.2. Suppose C ∈ R, and suppose u ∈ L2 is a real-valued solution of
(4.3), in the sense of distributions. Suppose also that u is not identically zero.
Then C > 0, and there exists K ∈ R such that

u =
2C

cosh2(
√
Cx+K)

. (4.5)
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Remark. We can also write (4.5) in the form

u = ψ(1)(x; a;
√
C),

where a = e−2K .

Proof. Suppose u is an L2 solution of (4.3) on R, and is not identically 0.
By Lemma 4.1, u is analytic on R, and is in Hs for every s ≥ 0. Hence, in
particular, u and all its derivatives tend to zero as |x| → ∞.

Multiplying (4.3) by u′ and integrating gives

(u′)2 = 4Cu2 − 2u3, (4.6)

where we have used the fact that u → 0 and u′ → 0 as x → ∞ to evaluate the
constant of integration as zero. Letting ζ = −C + u/2, we can rewrite (4.6) as

(ζ ′)2 = −4ζ(ζ + C)2. (4.7)

Since u is analytic on R, then so is ζ. We know that ζ cannot be identically
equal to −C on R, because u is not identically zero. Also, if C ̸= 0, then ζ
cannot be identically equal to 0 on R, because this would contradict the fact
that u → 0 as x → ∞. Therefore the set {x ∈ R : ζ(x) = 0 or ζ = −C} must
consist of isolated points (or be empty). Hence there exists an open interval I
in R such that for all x ∈ I, ζ(x) ̸= 0 and ζ(x) + C ̸= 0. Also, from (4.7) it
follows that ζ(x) < 0 for x ∈ I.

Define Ω to be the domain in the complex plane given by

Ω = C− {z : Re z ≥ 0 and Im z = 0}. (4.8)

Henceforth, for z ∈ Ω we will denote by
√
z the branch of the square root

function given by
√
z =

√
reiθ/2 when z = reiθ with r > 0 and 0 < θ < 2π.

Thus
√
z is an analytic function on Ω, and since ζ(x) takes values in Ω, then√

ζ(x) is an analytic function of x on I.
From (4.7) we have that there exists a function θ : I → {−1, 1} such that

ζ ′ = 2iθ(x)
√
ζ(ζ + C) (4.9)

for all x ∈ I. Since ζ(x)+C ̸= 0 for all x ∈ I, it then follows from (4.9) that θ is
analytic on I, and, since θ takes values in {−1, 1}, θ must therefore be constant
on I.

Now define v = −iθ
√
ζ on I, noting for future reference that, since ζ < 0 on

I, then v is real-valued. Let α =
√
C. We then have from (4.9) that

v′

C − v2
=

v′

α2 − v2
= 1. (4.10)

To integrate (4.10), we first fix x0 ∈ I, let V = v(x0), and define

Lα,V (z) =

∫ z

V

dw

α2 − w2
.
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Since V ̸= ±α, this defines Lα,V as a single-valued, analytic function of z in
some neighborhood of V . By shrinking I if necessary, we may assume that
Lα,V (v(x)) is defined for all x ∈ I, and so (4.10) may be integrated to give

Lα,V (v(x)) = x− x0 (4.11)

for x ∈ I.
Our next goal will be to solve (4.11) for v(x). Once this has been done, we

can recover u from the formula

u = 2(ζ + C) = 2(α2 − v2). (4.12)

Consider first the case when α ̸= 0 (and hence C ̸= 0). In this case, by
choosing an appropriate branch of the complex logarithm function, we could
express Lα,V (z) as

Lα,V (z) =
1

2α

(
log

(
α+ z

α+ V

)
− log

(
α− z

α− V

))
. (4.13)

However, this will not be necessary, since we really only need to use the fact
that

exp(2αLα,V (z)) =

(
α+ z

α− z

)(
α− V

α+ V

)
(4.14)

for all z in some neighborhood of V . To see that (4.14) is true, define f1(z)
to be the function on the left side of (4.14), and f2(z) to be the function on
the right side. Then both f1 and f2 satisfy the differential equation df/dz =
(2α/(α2 − z2))f(z) in some neighborhood of V , and both take the value 1 at
z = V . Since a solution f of the differential equation with a prescribed value at
V is unique on any neighborhood of V where it is defined, f1 must equal f2 on
some neighborhood of V .

Now multiplying both sides of (4.11) by 2α, taking exponentials, and using
(4.14), one obtains

α+ v

α− v
=

(
α+ V

α− V

)
e2α(x−x0) = e2A, (4.15)

where
A = α(x− x0) +M (4.16)

and M is any number such that

e2M =
α+ V

α− V
. (4.17)

Solving (4.15) for v, we find that

v =
y′

y
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where
y = sinhA. (4.18)

Substituting into (4.12), we find that

u = 2

(
α2y2 − (y′)2

y2

)
= 2(y′/y)′. (4.19)

Since u is analytic on R, then the function on the right side of (4.19) is
extendable to an analytic function on R. This implies that y cannot have any
zeroes onR. We now have to determine the values of C for which this is possible.
We consider separately the subcases in which C > 0 and C < 0.

If C > 0, then α =
√
C is real, and from (4.16) and (4.17) we see that we

can take
A = αx+K + iσπ/2, (4.20)

where K is real and either σ = 0 or σ = 1, according to whether (V +α)/(V −α)
is positive or negative. If σ = 0, then

y = sinh(αx+K),

which equals zero for some x ∈ R, so u has a singularity at this x. On the other
hand, if σ = 1, then (4.18) gives

y = i cosh(αx+K),

which does not vanish at any point of R. In this case the function u given by
(4.19) is nonsingular, and in fact we recover the solution given by (4.5).

If, on the other hand, C < 0, then α = i
√
|C| is purely imaginary, so∣∣∣∣α+ V

α− V

∣∣∣∣ = 1.

It then follows from (4.16) and (4.17) that A is purely imaginary, and we can
write

A = i(
√
|C|x+K), (4.21)

where K is real. Then (4.18) gives

y = i sin(
√
|C|x+K),

contradicting the fact that y cannot have any zeroes on R. We conclude that
C cannot be negative.

It remains to show that α and C cannot equal zero. For if they were, then
integrating (4.10) would give v = (x+K)−1, where K is a constant, and so by
(4.12),

u =
−2

(x+K)2

for all x ∈ I. But this contradicts the fact that u is analytic on all of R.
We have now shown that if (4.3) has a solution in L2 that is not identically

zero, then C must be positive, and in that case the only solutions are those
given by (4.5). So the proof is complete.
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5 The stationary equation for N = 2

According to Theorem 3.8 and Definition 3.12, every N -soliton solution of the
KdV hierarchy has profiles which are solutions of the stationary equation (2.15),
or more specifically of (3.38). In this section, for the case N = 2, we prove a
converse to this result: every H2 solution of (2.15) with N = 2 must be either
a 1-soliton profile or a 2-soliton profile.

Taking N = 2 in (2.15), we obtain from (2.14) the equation

d1
2

− d3
4
(u) +

d5
16

(u′′ + 3u2)− d7
64

(u′′′′ + 5u′2 + 10uu′′ + 10u3) = 0. (5.1)

We may assume in what follows that d7 ̸= 0, for otherwise we are back in the
case N = 1, which has already been handled in section 4. Dividing by d7 if
necessary, we can therefore take d7 = 1 without losing generality. We may also
henceforth assume that d1 = 0, since a computation similar to that given in
(4.2) shows that this must be the case if (5.1) has a solution u in H2.

Lemma 5.1. Suppose u ∈ H2 is a solution of equation (5.1) in the sense of
distributions. Then u must be in Hs for all s ≥ 0, and u is analytic on R. In
particular, we have

lim
x→∞

u(x) = lim
x→∞

u′(x) = lim
x→∞

u′′(x) = lim
x→∞

u′′′(x) = 0. (5.2)

Proof. Taking d1 = 0 in (5.1) and solving for u′′′′, we obtain

u′′′′ = au+ bu2 + cu3 + d(u′)2 + eu′′ + fuu′′, (5.3)

where a, b, c, d, e, f are constants. Since u ∈ H2, then all the terms on the right-
hand side of (5.3) are in L2, so u′′′′ ∈ L2 as well. Hence u ∈ H4, and this already
yields (5.2). It also implies that u is a classical solution of (5.1), so by funda-
mental theorems of ordinary differential equations, u is analytic. Finally, taking
derivatives of (5.3) successively and applying an inductive argument yields that
u ∈ Hs for all s ≥ 0.

Theorem 5.2. Suppose d1 = 0, d7 = 1, and d3 and d5 are arbitrary real num-
bers, and suppose u ∈ H2 is a nontrivial (i.e., not identically zero) distribution
solution of equation (5.1).

Then either
(i) u is a 1-soliton profile given by

u = ψ(1)
(
x; a;

√
C
)
, (5.4)

where C is a positive root of the quadratic equation

z2 − d5z + d3 = 0. (5.5)
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and a is a real number such that a > 0; or
(ii) u is a 2-soliton profile given by

u = ψ(2)
(
x; a1, a2;

√
C1,

√
C2

)
, (5.6)

where C1 and C2 are roots of equation (5.5) with 0 < C1 < C2, and a1 and a2
are real numbers such that a2 < 0 < a1.

Proof. Suppose u is a nontrivial distribution solution of (5.1) with d7 = 1 and
d1 = 0. By Lemma 5.1 we may assume that u is analytic on R and satisfies
(5.2).

Following Chapter 12 of [7] we define, for x ∈ R and ζ ∈ C,

R̂(x, ζ) = R̂0 + R̂1ζ + R̂2ζ
2, (5.7)

where

R̂0 = d3R1 + d5R3 + d7R5 =
d3
2

− d5
4
u+

1

16
(u′′ + 3u2)

R̂1 = d5R1 + d7R3 =
d5
2

− 1

4
u

R̂2 = d7R1 =
1

2
.

(5.8)

We claim that
R̂′′′ + 4uR̂′ + 2u′R̂+ 4ζR̂′ = 0. (5.9)

Indeed, substituting (5.7) into (5.9) and using Lemma 2.2, we find that the left
side of (5.9) is equal to

−4(d3R
′
3 + d5R

′
5 + d7R

′
7)+

+ ζ(d5Q1 + d7Q3 + 4d3R
′
1) + ζ2(d7Q1 + 4d5R

′
1) + ζ3(4d7R

′
1),
(5.10)

where Q1 = R′′′
1 +4uR′

1+2u′R1+4R′
3 and Q3 = R′′′

3 +4uR′
3+2u′R3+4R′

5. But
since u is a solution of (5.1) and d1 = 0, we have that d3R3 + d5R5 + d7R7 = 0,
so the first term in (5.10) vanishes, and Q1 and Q3 are zero by virtue of Lemma
2.2. Since R′

1 = 0, this proves (5.9).
Multiplying (5.9) by R̂ and integrating with respect to x gives

2R̂′′R̂− R̂′2 + 4(u+ ζ)R̂2 = P (ζ), (5.11)

where P (ζ) is a polynomial in ζ with coefficients that are independent of x.
From (2.14), (5.2), and (5.8) we see that

lim
x→∞

R̂0 = d3/2

lim
x→∞

R̂1 = d5/2

lim
x→∞

R̂2 = d7/2 = 1/2.

(5.12)
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Also,
lim
x→∞

R̂′
i(x) = lim

x→∞
R̂′′

i (x) = 0 for i = 0, 1, 2.

Therefore, taking the limit of (5.11) as x→ ∞, we get that

P (ζ) = ζ(d3 + d5ζ + ζ2)2. (5.13)

Combining (5.11) and (5.13) gives

2R̂′′R̂− R̂′2 + 4(u+ ζ)R̂2 = ζ(d3 + d5ζ + ζ2)2. (5.14)

Let C1 and C2 denote the (possibly repeated) roots of equation (5.5). As roots
of a polynomial with real coefficients, C1 and C2 are either both real numbers
or are complex conjugates of each other, and we may assume they are ordered
so that ReC1 ≤ ReC2. Then

d3 = C1C2 and d5 = C1 + C2, (5.15)

and so, by (5.14),

2R̂′′R̂− R̂′2 + 4(u+ ζ)R̂2 = ζ(ζ + C1)
2(ζ + C2)

2. (5.16)

Let us now view the function R̂(x, ζ) as a polynomial in the complex variable
ζ with coefficients which are analytic functions of x. Our next goal is to study
the roots of this polynomial.

First, observe that since R̂0 is, like u, analytic on R, then R̂0 is either
identically zero on R or has only isolated zeros. But if R̂0 is identically zero
on R, then by (5.12) we must have d3 = 0. The equation R̂0 = 0 in (5.8) is
then seen to take the form of (4.3), with C replaced by d5, and so it follows
from Theorem 4.2 that d5 > 0 and u is given by (5.4). Notice also that since
d3 = 0, d5 is a positive root of (5.5). Thus statement (i) of the Theorem holds
in this case. Therefore, we can, without loss of generality, assume that R̂0 has
only isolated zeros, and hence there exists an open interval I ⊆ R such that
R̂0(x) ̸= 0 for all x ∈ I. It then follows that for all x ∈ I, ζ = 0 is not a root of
R̂(x, ζ).

We claim that there exists at least one x0 ∈ I such that the polynomial
R̂(x0, ζ) has distinct roots ζ1 and ζ2. For if this is not the case, then there
exists a function ζ1(x) such that for all x ∈ I,

R̂(x, ζ) =
1

2
(ζ − ζ1(x))

2. (5.17)

From (5.17) and (5.7) we have that ζ1(x)
2 = 2R̂0(x), and since R̂0(x) is nonzero

for all x ∈ I it follows that ζ1(x) is analytic, and hence differentiable, as a
function of x. Thus we can differentiate (5.17) with respect to x to obtain

R̂′(x, ζ) = −(ζ − ζ1(x))ζ
′
1(x)

for x ∈ I. But then substituting ζ = ζ1(x) into (5.16) gives

0 = ζ1(x)(ζ1(x) + C1)
2(ζ1(x) + C2)

2.
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Since ζ1(x) ̸= 0 for x ∈ I, it follows that for all x ∈ I, either ζ1(x) = −C1 or
ζ1(x) = −C2. Since ζ1(x) is analytic on I, the set of points where ζ1(x) takes a
given value must either be a discrete subset of I, or consist of all of I. Since the
union of two discrete subsets of I cannot equal all of I, it must be that either
ζ1(x) ≡ −C1 on I or ζ1(x) ≡ −C2 on I. Hence (5.17) gives, for either j = 1 or
j = 2,

R̂(x, ζ) =
1

2
(ζ2 + 2Cjζ + C2

j ),

and so, by (5.7),

R̂1 =
d5
2

− 1

4
u = Cj

holds for all x ∈ I. But this implies that u is constant on I, and since u
is analytic on R, then u must be constant on R. Then (5.2) gives that u
is identically zero, contrary to our assumption that u is nontrivial. Thus the
claim has been proved.

It now follows from standard perturbation theory [21] that, by shrinking I if
necessary to a smaller neighborhood, we can assume that there exist analytic,
nonzero functions ζ1 and ζ2 on I such that ζ1(x) ̸= ζ2(x) and R̂(x, ζ1(x)) =
R̂(x, ζ2(x)) = 0 for all x ∈ I. We therefore have

R̂(x, ζ) =
1

2
(ζ − ζ1(x))(ζ − ζ2(x)), (5.18)

for all x ∈ I. Also, since ζ1 and ζ2 are roots of a real polynomial, we have that
either ζ1 and ζ2 are both real on I or ζ∗1 = ζ2 on I.

Our goal in what follows is to obtain a second-order system of differential
equations for ζ1 and ζ2, which can then be integrated explicitly to find ζ1 and
ζ2. Once this is accomplished, it is easy to recover u, since (5.7) and (5.18)
imply that ζ1 + ζ2 = −2R̂1, and hence

u = 2(ζ1 + ζ2 + d5). (5.19)

For i = 1, 2, we have R̂(x, ζi(x)) = 0, and hence it follows from (5.16) that

R̂′(x, ζi(x))
2 = −ζi(ζi + C1)

2(ζi + C2)
2. (5.20)

Differentiating (5.18) with respect to x, we obtain

R̂′(x, ζ) = −1

2
[(ζ − ζ1)ζ

′
2(x) + (ζ − ζ2)ζ

′
1(x)] .

Therefore

R̂′(x, ζ1(x)) = −1

2
(ζ1(x)− ζ2(x)) ζ

′
1(x)

R̂′(x, ζ2(x)) = −1

2
(ζ2(x)− ζ1(x)) ζ

′
2(x).

From (5.20) we then have that

(ζ1 − ζ2)
2(ζ ′1)

2 = −4ζ1(ζ1 + C1)
2(ζ1 + C2)

2

(ζ1 − ζ2)
2(ζ ′2)

2 = −4ζ2(ζ2 + C1)
2(ζ2 + C2)

2.
(5.21)
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Note that, since C1 and C2 are either both real numbers, or are complex
conjugates of one another, it follows from (5.21) that if ζ1 and ζ2 are real, they
must necessarily take negative values at all points of I. Since ζ1 and ζ2 are
nonzero functions on I, it follows that both ζ1 and ζ2 map I into the domain Ω
in the complex plane defined in (4.8). Also, since ζ1 − ζ2 has no zeros in I, we
have from (5.21) that

ζ ′1 =
2iθ1(x)

√
ζ1(ζ1 + C1)(ζ1 + C2)

ζ1 − ζ2

ζ ′2 =
2iθ2(x)

√
ζ2(ζ2 + C1)(ζ2 + C2)

ζ1 − ζ2
,

(5.22)

where θi(x) ∈ {−1, 1} for i = 1, 2. Here, as throughout the paper, we use
√
z to

denote the analytic branch of the square root function on Ω defined after (4.8).
The change of variables from u to (ζ1, ζ2), which reduces the stationary

equation (5.1) to the separable system (5.22), is due originally to Dubrovin in
[10] (see also [12, 20, 29], and chapter 12 of [7]). These authors use the same
change of variables (or, more precisely, its generalization to the case of general
N) to, among other things, determine the time evolution of finite-gap solutions
of the Korteweg-de Vries hierarchy.

Again using the analyticity of ζ1 and ζ2, and taking I smaller if necessary,
we can reduce consideration to the following two cases: either there exist i, j ∈
{1, 2} such that

ζi(x) + Cj = 0 for all x ∈ I, (5.23)

or, for all i, j ∈ {1, 2},

ζi(x) + Cj ̸= 0 for all x ∈ I. (5.24)

Suppose (5.23) holds, with for example i = 1 and j = 1; the argument for
other choices of i and j is exactly similar. Then from (5.22) we obtain

ζ ′2 = −2iθ2(x)
√
ζ2(ζ2 + C2). (5.25)

We know that ζ2 is not identically equal to −C2 on I, for otherwise (5.15),
(5.19), and ζ1 ≡ −C1 would imply that u is identically equal to 0 on I, and
hence also on R. Therefore, by taking I smaller if necessary, we may assume
that ζ2 is never equal to −C2 on I.

It then follows from (5.25) that θ2(x) is analytic on I. But since θ2 takes
values in {−1, 1}, the only way this can happen is if θ2 is constant on I. Setting
v = iθ2

√
ζ2 in (5.25), we obtain

v′

C2 − v2
= 1,

which is equation (4.10) with C replaced by C2.
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Moreover, we also know that C1 and C2 must be real, since otherwise we
would have C2 = C∗

1 , and together with ζ1 ≡ −C1 and ζ1 = ζ∗2 this would imply
ζ2 ≡ −C2 on I. Since C1 is real, then ζ1 ≡ −C1 implies that ζ1 is real, so ζ2
must also be real on I. Since we also know that ζ2 is never equal to zero on I,
it follows from (5.21) that ζ2 < 0 on I. Hence v is real-valued on I. Therefore
we can reprise the proof of Theorem 4.2 from (4.10) onwards, replacing C by
C2 throughout (notice that by (5.19) we have u = 2(ζ2 + C2) = 2(C2 − v2) in
this case as well). The conclusion is that C2 > 0 and that

u =
2C2

cosh2(
√
C2x+K)

.

In light of the remark following Theorem 4.2, we obtain the formula (5.4) for
u, and this must hold on the entire line. Thus the statement of the theorem is
proved in this case.

Therefore we may assume henceforth that (5.24) holds for all i, j ∈ {1, 2}.
In this case, the right-hand sides of both equations in (5.22) are never zero on
I, so as in the preceding cases it follows from (5.22) that θ1 and θ2 are both
analytic and hence constant functions on I, with value either −1 or 1. Set

v1 = −iθ1
√
ζ1

v2 = iθ2
√
ζ2,

(5.26)

and define αj , for j = 1, 2, to be complex numbers such that

α2
j = Cj . (5.27)

For definiteness we will choose αj to be the square root of Cj given by αj =
|Cj |1/2eiθ/2, where −π < θ ≤ π and Cj = |Cj |eiθ. In particular, this choice
guarantees that if C∗

1 = C2, then α
∗
1 = α2.

Since ζ1 and ζ2 are nonzero on I, so are v1 and v2. Also, as noted above after
(5.21), either ζ1 and ζ2 are both negative at all points of I, or ζ∗1 = ζ2 on I. In
the former case, we have that v1 and v2 are real-valued on I. In the latter case,
we see by taking the conjugate of the first equation in (5.22), comparing the
result to the second equation in (5.22), and using the fact that

√
z∗ = −(

√
z)∗

on Ω, that θ1 = −θ2 on I. Therefore from (5.26) we obtain that v∗1 = v2 on I.
We can now rewrite (5.22) as the following system for v1 and v2:

v′1 =
(α2

1 − v21)(α
2
2 − v21)

v22 − v21

v′2 =
(α2

1 − v22)(α
2
2 − v22)

v21 − v22
,

(5.28)

where either v1 and v2 are both real-valued on I, or v∗1 = v2 on I. Choose
x0 ∈ I, and define

V1 = v1(x0)

V2 = v2(x0).
(5.29)
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(For future reference we note that, as values of v1 and v2, V1 and V2 must both
be nonzero, and either V1 and V2 both real or V ∗

1 = V2.) Recalling that v21 ̸= v22
on I, we have that the right-hand sides of the equations in (5.28) define analytic
functions of v1 and v2 on I. Therefore the system (5.28), together with the
initial data (5.29), uniquely determines v1 and v2 on some neighborhood of x0
on I. Furthermore, from v1 and v2 one can then recover u via (5.19) as

u(x) = 2(−v21(x)− v22(x) + α2
1 + α2

2). (5.30)

We will complete the proof of Theorem 5.2 by explicitly solving the initial-
value problem (5.28) and (5.29) for v1 and v2, and then showing that, of the
functions u which arise from these solutions via (5.30), the only ones which
extend to H1 functions on R are those given by (5.6).

The system (5.28) can be integrated by separating the variables v1 and v2.
Since (5.24) holds on I, we have that vi(x) ̸= αj on I for i, j ∈ {1, 2}. This
allows us to rewrite (5.28) in the form

v′1
(α2

1 − v21)(α
2
2 − v21)

+
v′2

(α2
1 − v22)(α

2
2 − v22)

= 0

−v21v′1
(α2

1 − v21)(α
2
2 − v21)

+
−v22v′2

(α2
1 − v22)(α

2
2 − v22)

= 1.

(5.31)

To compute the solutions of (5.31) in the cases when the quantities α2
i coin-

cide or are zero, it will be helpful to consider as well a system in which the values
of the constants αi are slightly perturbed. For any positive number δ and com-
plex number z0, let Bδ(z0) denote the open ball of radius δ centered at z0 in C.
Choose δ to be any positive number such that δ < 1

4 min{|αi − Vj | : i, j = 1, 2}
and δ < |V1 − V2|. For each j ∈ {1, 2}, we define functions Gj = Gj(β1, β2, v)
and Hj = Hj(β1, β2, v) on Bδ(α1)×Bδ(α2)×Bδ(Vj) by

Gj(β1, β2, v) =

∫ v

Vj

dw

(β2
1 − w2)(β2

2 − w2)

Hj(β1, β2, v) =

∫ v

Vj

−w2dw

(β2
1 − w2)(β2

2 − w2)
.

(5.32)

From the definition of δ we know that the integrands in (5.32) are nonsingular
functions of w on Bδ(Vj), so Gj and Hj are well-defined and are analytic func-
tions of β1, β2, and v on their domains, as long as the integrals in their definition
are taken over paths from Vj to v which lie within Bδ(Vj). We can then define F :
C2×C2×R → C2, with domain UF = Bδ(α1)×Bδ(α2)×Bδ(V1)×Bδ(V2)×R,
by setting

F (β1, β2, v1, v2, x) =

[
F1

F2

]
=

[
G1(β1, β2, v1) +G2(β1, β2, v2)

H1(β1, β2, v1) +H2(β1, β2, v2)− x+ x0

]
.

(5.33)

29



Lemma 5.3. There exist numbers δ1 ∈ (0, δ) and δ2 > 0 such that for each
(β1, β2, x) in Bδ1(α1)×Bδ1(α2)× {|x− x0| < δ1} ⊆ C2 ×R, there is a unique
pair (v1, v2) in Bδ2(V2)×Bδ2(V2) ⊆ C2 satisfying

F (β1, β2, v1, v2, x) = 0. (5.34)

The functions v1(β1, β2, x) and v2(β1, β2, x) so defined are analytic functions of
their arguments, and for each (β1, β2) ∈ Bδ1(α1)×Bδ1(α2), are solutions of the
system of ordinary differential equations

v′1
(β2

1 − v21)(β
2
2 − v21)

+
v′2

(β2
1 − v22)(β

2
2 − v22)

= 0

−v21v′1
(β2

1 − v21)(β
2
2 − v21)

+
−v22v′2

(β2
1 − v22)(β

2
2 − v22)

= 1,

(5.35)

on {|x− x0| < δ1}, with initial conditions

v1(β1, β2, x0) = V1

v2(β1, β2, x0) = V2.
(5.36)

Proof. A computation of the Jacobian of F with respect to the variables v1 and
v2, reveals that, at all points P = (β1, β2, v1, v2, x) in the domain UF of F , we
have

∇v1,v2F (P ) =

[
∂F1/∂v1 ∂F1/∂v2
∂F2/∂v1 ∂F2/∂v2

]∣∣∣∣
P

=


1

(β2
1 − v21)(β

2
2 − v21)

1

(β2
1 − v22)(β

2
2 − v22)

−v21
(β2

1 − v21)(β
2
2 − v21)

−v22
(β2

1 − v22)(β
2
2 − v22)

 .
(5.37)

The determinant of the matrix in (5.37) is (v21 − v22)/
∏

i,j=1,2(β
2
i − v2j ), and is

therefore nonzero for all P ∈ UF . In particular, when P0 = (α1, α2, V1, V2, x0)
we have that ∇v1,v2F (P0) is an invertible map from C2 to C2. Moreover,
F (P0) = 0. The assertions of the Lemma concerning the existence, uniqueness,
and analyticity of the functions v1 and v2 which satisfy (5.34) therefore follow
from the Implicit Function Theorem (cf. §15 of [6]). Equations (5.35) then follow
by differentiating both sides of (5.34) with respect to x. The initial conditions
(5.36) are a consequence of the uniqueness assertion for the vi and the fact that

F (β1, β2, V1, V2, x0) = 0

for each (β1, β2) ∈ Bδ1(α1)×Bδ1(α2).

Motivated by (5.30), we now define, for each (β1, β2, x) ∈ Bδ1(α1)×Bδ1(α2)×
{|x− x0| < δ1},

u(β1, β2, x) = 2(−v1(β1, β2, x)2 − v2(β1, β2, x)
2 + β2

1 + β2
2). (5.38)
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Corollary 5.4. The solution u of (5.1) described in Theorem 5.2 is related to
the functions u(β1, β2, x) by

u(x) = u(α1, α2, x) = lim
(β1,β2)→(α1,α2)

u(β1, β2, x) (5.39)

for all x such that |x− x0| < δ1.

Proof. By Lemma 5.3, the functions v1(α1, α2, x) and v2(α1, α2, x) satisfy (5.31)
for |x − x0| < δ1, and therefore, since ∇v1,v2F (P0) is invertible, also sat-
isfy (5.28). Comparing the initial conditions (5.36) and (5.29), we see from
the uniqueness of the solutions of the initial value problem for (5.28) that
(v1(x), v2(x)) = (v1(α1, α2, x), v2(α1, α2, x)) for all x in some neighborhood of
x0. Putting (β1, β2) = (α1, α2) in (5.38) and comparing with (5.30), we see that
u(x) then agrees with u(α1, α2, x) on this neighborhood. Since u(x) is analytic
on R and u(α1, α2, x) is analytic on {|x − x0| < δ1}, they must agree on all of
{|x − x0| < δ1}. Finally, the assertion that u(x) is given by the limit in (5.39)
follows from the fact that u(β1, β2, x) is analytic and hence continuous in β1
and β2.

The next step in the proof of Theorem 5.2 is to explicitly determine the
functions u(β1, β2, x) defined in (5.38). Generically, we will have that β2

1 and
β2
2 are distinct and nonzero, even if this is not true when β1 = α1 and β2 = α2.

In this case, we have the following Lemma.

Lemma 5.5. Suppose (β1, β2, x) ∈ Bδ1(α1) × Bδ1(α2) × {|x − x0| < δ1}, and
suppose that β2

1 ̸= β2
2 , and βj ̸= 0 for j = 1, 2. Then

u(β1, β2, x) = 2(D′/D)′, (5.40)

where

D = D(β1, β2, x) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ , (5.41)

with
yj = sinh(βj(x− x0) +Mj) (5.42)

for j = 1, 2. HereM1 andM2 can be taken to be any complex numbers satisfying

e2Mj =
(βj + V1)(βj + V2)

(βj − V1)(βj − V2)
(5.43)

for j = 1, 2.

Proof. Under the stated assumptions on (β1, β2, x), we have, for v ∈ Bδ(Vj),

Gj(β1, β2, v) =
1

β2
2 − β2

1

[
Lβ1,Vj (v)− Lβ2,Vj (v)

]
Hj(β1, β2, z) =

1

β2
2 − β2

1

[
−β2

1Lβ1,Vj (v) + β2
2Lβ2,Vj (v)

]
,

(5.44)
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where Lβ,V is defined in (4.13). Let vj denote vj(β1, β2, x) for j = 1, 2, and
define

wj = 2βjLβj ,V1
(v1) + 2βjLβj ,V2

(v2). (5.45)

Substituting (5.44) into (5.33), we see that (5.34) can be rewritten as a linear
system for w1 and w2:

β2w1 − β1w2 = 0

−β1w1 + β2w2 = 2(β2
2 − β2

1)(x− x0).

Since β1 ̸= β2, the system has a unique solution, given by

wj = 2βj(x− x0) for j = 1, 2. (5.46)

Now from (4.14) and (5.45) we have that

ewj =

(
βj + v1
βj − v1

)(
βj + v2
βj − v2

)(
βj − V1
βj + V1

)(
βj − V2
βj + V2

)
.

Therefore after exponentiating both sides of (5.46), we obtain, for j = 1, 2,

(βj + v1)(βj + v2)

(βj − v1)(βj − v2)
=

(βj + V1)(βj + V2)

(βj − V1)(βj − V2)
e2βj(x−x0) = e2(βj(x−x0)+Mj), (5.47)

where M1 and M2 are any complex numbers such that (5.43) holds.
If we now define

W1 = −(v1 + v2)

W0 = v1v2,

then (5.47) can be rewritten as[
y1 y′1
y2 y′2

] [
W0

W1

]
= −

[
y′′1
y′′2

]
, (5.48)

where yj is given by (5.42) for j = 1, 2. Solving (5.48) by Cramer’s rule, we find
that W1 and W0 are given by (3.6) and (3.7), with N = 2. Therefore we can
conclude from Corollary 3.4 that

W ′
1 =W 2

1 − 2W0 − β2
1 − β2

2 . (5.49)

On the other hand, from (5.38) we have

u(β1, β2, x) = 2(2W0 −W 2
1 + β2

1 + β2
2), (5.50)

and from (5.49) and (5.50) it then follows that u(β1, β2, x) = −2W ′
1. By (3.6),

we have W ′
1 = −D′/D, with D given by (5.41). Then (5.40) follows.

We now determine the conditions on β1 and β2 under which (5.40) defines a
nonsingular solution on R, or in other words, under which D(β1, β2, x) has no
zeroes on R.
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Lemma 5.6. Suppose (β1, β2) ∈ Bδ1(α1)×Bδ1(α2), and suppose that β2
1 ̸= β2

2 ,
and βj ̸= 0 for j = 1, 2. Suppose also that 0 ≤ Reβ1 ≤ Reβ2, and either β2

1

and β2
2 are both real numbers, or β∗

1 = β2.
If, as a function of x, u(β1, β2, x) can be analytically continued to an analytic

function on the entire real line, then 0 < β1 < β2, and there exist numbers a1
and a2 with a2 < 0 < a1 such that

u(β1, β2, x) = ψ(2)(x; a1, a2;β1, β2)

on R.

Proof. Observe that, according to Lemma 5.5, if u(β1, β2, x) can be analytically
continued to an analytic function on the real line, then the function D(β1, β2, x)
defined in (5.41)–(5.43) must be nonzero for all x ∈ R. In fact, from (5.40) it is
easy to see that, at any point x where D(β1, β2, x) has a zero, u(β1, β2, x) will
have a pole of order two.

If β∗
1 = β2, then since either V1 and V2 are both real or V ∗

1 = V2, we
see from (5.43) that we can choose M1 and M2 so that M∗

1 = M2. Define
Kj = −βjx0 +Mj and

Aj = βj(x− x0) +Mj = βjx+Kj ,

so that A∗
1 = A2 and, by (5.42), yj = sinhAj for j = 1, 2. Let a = Re(β1),

b = Im(β1), P = Re(K1), and Q = Im(K1). Then from (5.41), we have

D = β2 sinh(A1) cosh(A2)− β1 cosh(A1) sinh(A2)

= β∗
1 sinh(A1) cosh(A

∗
1)− β1 cosh(A1) sinh(A

∗
1)

= 2 Im (β∗
1 sinh(A1) cosh(A

∗
1))

= a sin(2(bx+Q))− b sinh(2(ax+ P )).

Therefore D changes sign as x goes from large negative values to large positive
values, and hence D must equal zero for some x ∈ R. Therefore, as remarked
above, u(β1, β2, x) cannot be continued to an analytic function on R.

Next, suppose β2
1 and β2

2 are real and of opposite sign, say β2
1 < 0 < β2

2 . In
this case β1 is purely imaginary, say β1 = ib, and β2 is real. Then when M1

and M2 are chosen so that (5.43) holds, it follows that (e2M1)∗ = e−2M1 and
(e2M2)∗ = e2M2 . We can thus take M1 to be purely imaginary, and M2 so that
either M2 is real or ImM2 = π/2. Now the same arguments as in equations
(4.20) to (4.21) in Section 4 show that

y1 = i sin(bx+K1) (5.51)

for some real K1, and either

y2 = sinh(β2x+K2) (5.52)

or
y2 = i cosh(β2x+K2) (5.53)

33



for some real K2. If (5.51) and (5.52) hold, the equation D = 0 becomes

tan(bx+K1)

b
=

tanh(β2x+K2)

β2
,

which has infinitely many solutions on R. If, on the other hand, (5.51) and
(5.53) hold, then the equation D = 0 becomes

tan(bx+K1)

b
=

coth(β2x+K2)

β2
,

which again has infinitely many solutions.
Now suppose that β2

1 and β2
2 are both negative, say β2

1 < β2
2 < 0. Then β1

and β2 are both purely imaginary, say βj = ibj for j = 1, 2, and in (5.43) we
can choose M1 and M2 to be purely imaginary. Thus

yj = i sin(bjx+Kj)

on I for j = 1, 2, where K1 and K2 are real, so D has a zero at any point x ∈ R
which satisfies the equation

tan(b1x+K1)

b1
=

tan(b2x+K2)

b2
. (5.54)

Since β2
1 ̸= β2

2 , then b1 ̸= b2, in which case it is easy to see that equation (5.54)
always has solutions.

We have now shown that, under the stated assumptions on β1 and β2,
u(β1, β2, x) can be continued to an analytic function on R only if β2

1 and β2
2 are

both positive, with therefore 0 < β1 < β2. In this case, when M1 and M2 are
chosen to satisfy (5.43), we will have that (e2Mj )∗ = e2Mj for j = 1, 2. Then, as
in (5.52) and (5.53), for each j we have that either

yj = sinh(βjx+Kj)

or
yj = i cosh(βjx+Kj),

where K1 and K2 are real. There are therefore four cases to consider, which,
according to Definition 3.6, can be summarized as follows:

u = ψ(2)(x; a1, a2;β1, β2),

where aj are nonzero numbers given by aj = ±e−2Kj for j = 1, 2.
If a1 and a2 are both positive, then D = 0 holds at any point x where

β2 tanh(β2x+K2)− β1 tanh(β1x+K1) = 0, (5.55)

and since the left-hand side of (5.55) changes sign from negative to positive as
x increases from large negative values to large positive values, there must exist
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solutions to (5.55) in R. Similarly, if a1 and a2 are both negative, then D = 0
when

β1 tanh(β2x+K2)− β2 tanh(β1x+K1) = 0,

which again must have at least one solution in R. If a1 < 0 < a2, then D = 0
when

tanh(β1x+K1) tanh(β2x+K2) =
β1
β2

which must have a solution, since the fraction on the right-hand side is between
0 and 1, and the function on the left-hand side attains the value zero at the
points x = −Kj/βj , j = 1, 2, and approaches 1 as x→ ±∞.

Finally, if a2 < 0 < a1, then D = 0 only if

tanh(β1x+K1) tanh(β2x+K2) =
β2
β1
. (5.56)

But (5.56) has no solutions, since the fraction on the right-hand side is greater
than 1, and the function on the left-hand side always takes values less than 1.
(Alternatively, in this final case we could deduce from Lemma 3.10 that D is
never 0 on R.)

5.1 The nondegenerate case

In this subsection we consider the case in which the roots C1 and C2 of (5.5)
are nondegenerate: that is, when C1 ̸= C2, C1 ̸= 0, and C2 ̸= 0. Recall that,
as mentioned following equation (5.14), we can assume that either C1 and C2

are both real, with C1 < C2, or C
∗
1 = C2. From our definition of αj in (5.27)

and the remarks following, we have then that α1 and α2 are distinct and both
nonzero, with 0 ≤ Reα1 ≤ Reα2; and either α2

1 and α2
2 are both real, with

α2
1 < α2

2, or α
∗
1 = α2.

According to Corollary 5.4, u(x) = u(α1, α2, x) on some neighborhood of x0,
and therefore u(α1, α2, x) can be analytically continued to a function which is
analytic on all of R. It then follows from Lemma 5.6 that 0 < α1 < α2, and

u(x) = ψ(2)(x; a1, a2;α1, α2)

for some numbers a1 and a2 with 0 < a1 < a2.
We have therefore proved Theorem 5.2 in the nondegenerate case, by showing

that the only possible solutions in this case are given by (5.6).
To complete the proof of Theorem 5.2, it remains to show that the degenerate

cases, when C1 and C2 can coincide or vanish, cannot arise under the assumption
that (5.1) has a nontrivial solution u(x) in H2(R). Since any H2 solution must
be analytic on R, to accomplish this it is enough to show that in the degenerate
cases, any locally analytic solution of (5.1) extends analytically to a function
with a singularity on R.
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5.2 The degenerate case C1 = C2 ̸= 0

In this subsection we consider the case when equation (5.5) has a nonzero double
root, so that C1 = C2 = C ̸= 0 in (5.31). In this case, C must be real. Define
α to be a square root of C, following the convention for choice of square roots
set after (5.27). From Corollary 5.4 we have that

u(x) = u(α, α, x) = lim
ϵ→0

u(α, α+ ϵ, x) (5.57)

for |x− x0| < δ1.
We now compute the limit in (5.57). Since α ̸= 0, by taking ϵ positive

and sufficiently small, we may assume that β1 = α and β2 = α + ϵ satisfy the
hypotheses of Lemma 5.5. We thus obtain that, for |x− x0| < δ1,

u(α, α+ ϵ, x) = 2(D(α, α+ ϵ, x)′/D(α, α+ ϵ, x))′ (5.58)

where for all complex numbers s and t we define D(s, t, x) by

D(s, t, x) = t sinhA(s, x) coshA(t, x)− s sinhA(t, x) coshA(s, x), (5.59)

with
A(s, x) = s(x− x0) +M(s)

and

eM(s) =
(s+ V1)(s+ V2)

(s− V1)(s− V2)
. (5.60)

Since the right side of (5.60) is nonzero for s = α, we may assume that M(s) is
defined and analytic for s in some neighborhood of α.

Observe that for ϵ > 0 we can rewrite equation (5.58) in the form

u(α, α+ ϵ, x) = 2(D1(ϵ, x)
′/D1(ϵ, x))

′, (5.61)

where

D1(ϵ, x) =
D(α, α+ ϵ, x)

ϵ
=
D(α, α+ ϵ, x)−D(α, α, x)

ϵ
.

Let us define

D1(0, x) = lim
ϵ→0

D1(ϵ, x) =
∂

∂ϵ

∣∣∣∣
ϵ=0

D(α, α+ ϵ, x).

Computing the derivative gives

D1(0, x) =
1

2
sinh(2α(x− x0) + 2M(α))− α(x− x0)− αM ′(α) (5.62)

for all x ∈ R. Choose I1 to be any nonempty subinterval of (x0 − δ1, x0 + δ1)
such that D1(0, x) ̸= 0 on the closure of I1. Then, as ϵ goes to 0, D1(ϵ, x) will
converge to D1(0, x) uniformly on I1, and the derivatives with respect to x of
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D1(ϵ, x) will converge to the corresponding derivatives of D1(0, x) uniformly on
I1 as well. It then follows from (5.57) and (5.61) that

u(x) = 2(D1(0, x)
′/D1(0, x))

′ (5.63)

for x ∈ I1.
We now show that (5.63) extends analytically to a singular function on R.

For this it is enough to show that D1(0, x) has at least one zero on R.
If C is positive, then α is a positive real number. Recalling that either V1

and V2 are both real or V ∗
1 = V2, we see that eM(α) is real. Depending on

whether the right-hand side of (5.60) is positive or negative at s = α, we can
choose M(α) to either be real, or to have imaginary part π/2. Also since (5.60)
implies

M ′(s) =
(s+ V1) + (s+ V2)

(s+ V1)(s+ V2)
− (s− V1) + (s− V2)

(s− V1)(s− V2)
, (5.64)

M ′(α) is real in any case.
IfM(α) is real, from (5.62) we see that D1(0, x) > 0 for x large and positive,

and D1(0, x) < 0 for x large and negative. Therefore there must exist at least
one x ∈ R for which D1(0, x) = 0. On the other hand, if M(α) = K + iπ/2 for
K real, then (5.62) gives

D1(0, x) = −1

2
sinh(2α(x− x0) + 2K)− α(x− x0)− αM ′(α),

and again we see that D1(0, x) = 0 for some x ∈ R.
If C is negative, then α = iγ for some positive number γ. We see from

(5.60) that eM(iγ) has modulus 1, and so M(iγ) can be taken to be purely
imaginary: say M(iγ) = iη1 for η1 ∈ R. From (5.64) it is readily checked that
M ′(iγ)∗ =M ′(iγ), and henceM ′(iγ) is real: sayM ′(iγ) = η2 for η2 ∈ R. Then
from (5.62) we have that

D1(0, x) = i

(
1

2
sin(2γ(x− x0) + 2η1)− γ(x− x0)− γη2

)
. (5.65)

The quantity in parentheses in (5.65) is a real-valued function of x which is
positive for large negative values of x, and is negative for large positive values
of x. Therefore D1(0, x) must equal zero for some x ∈ R.

We have shown, then, that whenever C1 = C2 ̸= 0, u(x) is given on some
open interval by the function on the right hand side of (5.63), which however
cannot be extended analytically to a function on all of R. This contradicts the
fact that u(x) is analytic on R. Thus no nontrivial H2 solutions to (5.1) can
exist in this case.

5.3 The degenerate case when C1 = 0 or C2 = 0 (but not
both)

Here we consider the cases when either 0 = C1 < C2 or C1 < C2 = 0.
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Suppose first that C1 = 0 and C2 > 0, and let α =
√
C2. From Corollary

5.39 we have that
u(x) = u(0, α, x) = lim

ϵ→0
u(ϵ, α, x) (5.66)

for |x − x0| < δ1. For ϵ sufficiently small, we can take β1 = ϵ and β2 = α in
Lemma 5.5, obtaining

u(ϵ, α, x) = 2(D(ϵ, α, x)′/D(ϵ, α, x))′, (5.67)

where D is as defined in (5.59). Again, we may assume that M(s) in (5.60)
is defined and analytic for s in some neighborhood of α and for s in some
neighborhood of 0. Note that we can take M(0) = 0, so A(0, x) = 0.

As in (5.61), we can write, for all ϵ > 0,

u(ϵ, α, x) = 2(D2(ϵ, x)
′/D2(ϵ, x))

′, (5.68)

where

D2(ϵ, x) =
D(ϵ, α, x)

ϵ
=
D(ϵ, α, x)−D(0, α, x)

ϵ

and D(0, α, x) = 0. Define

D2(0, x) = lim
ϵ→0

D2(ϵ, x) =
∂

∂ϵ

∣∣∣∣
ϵ=0

D(ϵ, α, x).

We find by differentiating that

D2(0, x) = α cosh(α(x−x0)+M(α)) [x− x0 +M ′(0)]−sinh(α(x−x0)+M(α)).
(5.69)

As in Subsection 5.2, on any subinterval of {|x − x0| < δ1} where D2(0, x) is
bounded away from zero, it follows from (5.66) and (5.68) that

u(x) = u(0, α, x) = 2(D2(0, x)
′/D2(0, x))

′. (5.70)

Now D2(0, x) = 0 at any point x for which

α(x− x0 +M ′(0)) = tanh(α(x− x0) +M(α)). (5.71)

Again as in Subsection 5.2, since α is real then M ′(α) is real and M(α) can be
taken to either be real or to have imaginary part π/2. Since tanh(x + iπ/2) =
tanh(x) for all x ∈ R, in either case (5.71) takes the form

αx− β1 = tanh(αx− β2),

where β1 and β2 are real numbers, and hence must have a solution at some
point in R. It follows then from (5.70) that u cannot be analytically continued
to all of R.

There remains to consider the case when C1 < 0 and C2 = 0. Let α = iβ,
where β > 0 and β2 = |C1|. From Corollary 5.39 we have

u(x) = u(α, 0, x) = lim
ϵ→0

u(α, ϵ, x),
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and Lemma (5.5) gives, for ϵ sufficiently small,

u(α, ϵ, x) = 2(D(α, ϵ, x)′/D(α, ϵ, x))′ = 2(D(ϵ, α, x)′/D(ϵ, α, x))′,

provided |x − x0| < δ1, where D is still given by (5.59). Hence u(α, ϵ, x) is
still given by the right-hand side of (5.67), and the calculations in (5.68) to
(5.71) apply to u(α, ϵ, x), the only difference being that now α = iβ is purely
imaginary. In this case, as seen in Subsection 5.2, M(α) can be taken to be
purely imaginary, and so (5.71) can be rewritten in the form

βx− β1 = tan(βx− β2),

where β1 and β2 are real numbers. This equation has (infinitely many) real
solutions, and so again u cannot be analytically continued to all of R.

We have thus proved that when either C1 or C2 (but not both) is zero, then
u cannot be analytically continued to R. So under the assumption that u is an
H2 solution of (5.1), this case cannot arise.

5.4 The degenerate case C1 = C2 = 0

Finally we consider the case when C1 and C2 are both zero. Then, by Corollary
(5.4),

u(x) = u(0, 0, x) = lim
α→0

u(0, α, x), (5.72)

where u(0, α, x) is given for α > 0 by (5.70) with (5.69). To emphasize the
dependence of D2(0, x) on α, let us denote D2(0, x) by D3(α, x) in what follows.
That is,

D3(α, x) = α cosh(α(x−x0)+M(α)) [x− x0 +M ′(0)]−sinh(α(x−x0)+M(α)).

The limit in (5.72) is more singular than those in preceding sections, because
D3(α, x) has a zero of order three at α = 0. That is, we have

D3(0, x) =
∂D3

∂α
(0, x) =

∂2D3

∂α2
(0, x) = 0.

Therefore, to obtain a formula for u(0, 0, x), we should define

D4(α, x) =
D3(α, x)

α3
,

and we will have
u(0, 0, x) = 2(D4(0, x)

′/D4(0, x))
′,

where

D4(0, x) = lim
α→0

D4(α, x) =
1

6

∂3

∂α3

∣∣∣∣
α=0

D3(α, x). (5.73)

An elementary but fairly tedious computation of the derivative in (5.73) shows
that

D4(0, x) =
1

3
(x− x0 +M ′(0))3 − 1

6
M ′′′(0),
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and as M ′(s) is real for all real s by (5.64), we have that M ′(0) and M ′′′(0) are
real. Clearly then D4(0, x) has a zero at some x ∈ R, and so u(x) = u(0, 0, x)
cannot be extended to an analytic function on R.

To summarize, we have now shown that in all the degenerate cases, when C1

or C2 are zero or when C1 = C2, (5.1) cannot have an H2 solution on R; and
in the nondegenerate case the only possible solutions are given by (5.6). This
then completes the proof of Theorem 5.2.

6 The stationary equation for general N

We conclude with a few comments as to how the results above may be general-
ized to arbitary stationary equations of the KdV hierarchy. In view of the first
remark following Definition 3.12, it is natural to conjecture the following gen-
eralization of Theorems 4.2 and 5.2: if u ∈ H2N−2 is a nontrivial distribution
solution of the stationary equation

d3R3 + d5R5 + d7R7 + · · ·+ d2N+3R2N+3 = 0,

then umust be a k-soliton profile for the KdV hierarchy, for some k ∈ {1, 2, . . . , N}.
More precisely, there must exist real numbers αj and aj , with (−1)j−1aj > 0
for j = 1, . . . , k, such that

u(x) = ψ(k)(x; a1, . . . , ak;α1, . . . , αk).

Much of the proof given above for Theorem 5.2 generalizes immediately to
arbitrary N . The extension of Lemma 5.1 to arbitrary N , with H2 replaced by
H2N−2, is obvious. Let C1, . . . CN be the roots of the equation

d2N+3z
N − d2N+1z

N−1 + d2N−1z
N−2 − · · · ± d3, (6.1)

and let αj be the square roots of the Cj , suitably defined. The generalization

to arbitary N of the definition of R̂(x, ζ) is already given in [7], along with the
proof that in the case when R̂(x, ζ) has distinct roots ζ1, . . . , ζN at some x0,
they satisfy an analogue of the system (5.22).

Using induction and an argument like that given above in Section 5, we
can assume that the ζj are in fact distinct, since otherwise (5.22) reduces to a
system with a smaller value of N . From (5.22) one then obtains a generalization
of the system (5.31) for functions vj which are suitably defined square roots of
the functions −ζj . Lemma 5.3, Corollary 5.4, and Lemma 5.5 all generalize
straightforwardly to arbitrary N . We thus obtain that any solution u(x) of
(2.15) is given by

u(x) = u(α1, . . . , αn, x) = lim
β1→α1,...,βN→αN

ψ(N)(x; a1, . . . , aN ;β1, . . . , βN ),

(6.2)
for some complex numbers a1, . . . , aN , where the limit is taken through values
of (β1, . . . , βN ) such that the βj are distinct and all non-zero.
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To complete the proof of the conjectured general result, then, it would remain
to do two things. First, establish an analogue of Lemma 5.6, or in other words
establish the conjecture mentioned in the first remark after Definition 3.12; and
second, show that in the degenerate cases when some of the Cj coincide or are
equal to zero, the functions ψ(N)(x; a1, . . . , aN ;β1, . . . , βN ) in (6.2) converge to
a limit which cannot be analytically continued to all of R.
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